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Abstract

In this paper, we develop, analyze and test a local discontinuous Galerkin
(LDG) method for solving the Camassa-Holm equation which contains nonlinear
high order derivatives. The LDG method has the flexibility for arbitrary h and
p adaptivity. We prove the L2 stability for general solutions and give a detailed
error estimate for smooth solutions, and provide numerical simulation results for
different types of solutions of the nonlinear Camassa-Holm equation to illustrate
the accuracy and capability of the LDG method.
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1 Introduction

In this paper, we consider numerical approximations to the Camassa-Holm (CH) equation

[4, 5]

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (1.1)

where κ is a constant. Such nonlinearly dispersive partial differential equations support

peakon solutions. The lack of smoothness at the peak of the peakon introduces high-

frequency dispersive errors into the calculation. It is a challenge to design stable and

accurate numerical schemes for solving this equation.

We develop a class of local discontinuous Galerkin (LDG) methods for this nonlinear

CH equation. Our proposed scheme is high order accurate, nonlinear stable and flexible
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for arbitrary h and p adaptivity. The proof of the L2 stability of the scheme is given for

general solutions. Error estimates are given for smooth solutions. To our best knowledge,

this is the first provably stable finite element method for the Camassa-Holm equation.

The main motivation for the algorithm discussed in this paper originates from the

LDG techniques which have been developed for convection diffusion equations (contain-

ing second derivatives) [9] and nonlinear wave equations with high order derivatives

[32, 33, 24, 27, 28, 29, 30]. In these papers, stable LDG method for quite general nonlin-

ear wave equations including multi-dimensional and system cases have been developed.

The proof of the nonlinear L2 stability of these methods are usually given and success-

ful numerical experiments demonstrate their capability. These results indicate that the

LDG method is a good tool for solving nonlinear equations in mathematical physics.

There are only a few works in the literature for error estimates of the LDG method

for nonlinear wave equations with high order derivatives. In [31], a priori error estimates

are given for the LDG method for nonlinear convection-diffusion equations and KdV

equations. There are technical difficulties to derive the L2 a priori error estimates from

the cell entropy inequality and approximation results, because of the possible lack of

control on some of the jump terms at cell boundaries, which appear because of the

discontinuous nature of the finite element space for the DG method. The remedy in [31]

to handle such jump terms is via a special projection, which eliminates such troublesome

jump terms in the error equation. It is more challenging to perform L2 a priori error

estimates for nonlinear PDEs with high order derivatives than for first order hyperbolic

PDEs in [34].

The CH equation (1.1) was derived as a model for the propagation of the unidirec-

tional gravitational waves in a shallow water approximation, with u representing the

free surface of water over a flat bed [4, 5, 18]. The CH equation has a very intriguing

structure. For instance, it is completely integrable and models wave breaking for a large

class of initial data. This equation has attracted a lot of attention in the literature.

Lenells gave a detailed discussion of its conservation law in [23] and also classified all the

weak traveling wave solutions in [22]. Johnson [19] implemented the inverse-scattering

transform method to the solution of the CH equation. Li and Zhang [25] used the same

method to solve a multiple-soliton for the CH equation. Bressan and Constantin [2, 3]

developed a new approach for its analysis, particularly for the investigation of the wave

breaking.

There are only a few numerical works in the literature to solve the CH equation.

Holden and Raynaud [17] proved the convergence of a finite difference method for the CH

equation and they also developed a convergent numerical scheme based on multipeakon

in [16]. Several different aspects of periodic traveling wave solutions of the CH equation

were numerically explored in [20] and the error analysis of a spectral projection of the

periodic CH equation was given in [21]. A finite-volume method was developed in [1] to

simulate the dynamics of peakons.

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite

element methods using completely discontinuous piecewise polynomial space for the nu-
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merical solution and the test functions in the spatial variables. The DG discretization

results in an extremely local, element based discretization, which is beneficial for parallel

computing and maintaining high order accuracy on unstructured meshes. In particular,

DG methods are well suited for hp-adaptation, which consists of local mesh refinement

and/or the adjustment of the polynomial order in individual elements. They also have

excellent provable nonlinear stability. The LDG method for the Camassa-Holm equation

(1.1) that we design in this paper shares all these nice properties. More general informa-

tion about DG methods can be found in [7, 10, 11, 12]. Recently, Eskilsson and Sherwin

[13, 14, 15] also presented discontinuous spectral element methods for simulating 1D

linear Boussinesq-type equations, dispersive shallow water systems and 2D Boussinesq

equations.

The paper is organized as follows. In Section 2, we present and analyze our LDG

method for the Camassa-Holm equation (1.1). In Section 2.2, we present the LDG

method. Details related to the implementation of the method are described in Section

2.3. We give a proof of the L2 stability in Section 3, and present an a priori error

estimate in Section 4. Section 5 contains numerical results to demonstrate the accuracy

and capability of the methods. Concluding remarks are given in Section 6. Some of the

more technical proofs of several lemmas are collected in the Appendix.

2 The LDG method for the Camassa-Holm equation

2.1 Notation

We denote the mesh by Ij = [xj− 1
2
, xj+ 1

2
], for j = 1, . . . , N . The center of the cell is xj =

1
2
(xj− 1

2
+xj+ 1

2
) and the mesh size is denoted by hj = xj+ 1

2
−xj− 1

2
, with h = max1≤j≤N hj

being the maximum mesh size. We assume the mesh is regular, namely the ratio between

the maximum and the minimum mesh sizes stays bounded during mesh refinements. We

define the piecewise-polynomial space Vh as the space of polynomials of the degree up

to k in each cell Ij , i.e.

Vh = {v : v ∈ P k(Ij) for x ∈ Ij , j = 1, . . . , N}.

Note that functions in Vh are allowed to have discontinuities across element interfaces.

The solution of the numerical scheme is denoted by uh, which belongs to the finite

element space Vh. We denote by (uh)
+
j+ 1

2

and (uh)
−
j+ 1

2

the values of uh at xj+ 1
2
, from

the right cell Ij+1, and from the left cell Ij , respectively. We use the usual notations

[uh] = u+
h − u−

h and ūh = 1
2
(u+

h + u−
h ) to denote the jump and the mean of the function

uh at each element boundary point, respectively.
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2.2 The LDG method

In this section, we define our LDG method for the Camassa-Holm equation (1.1), written

in the following form

u − uxx = q, (2.1)

qt + f(u)x =
1

2
(u2)xxx −

1

2
((ux)

2)x (2.2)

with an initial condition

u(x, 0) = u0(x) (2.3)

and periodic boundary conditions

u(x, t) = u(x + L, t), (2.4)

where L is the period in the x direction and f(u) = 2κu+ 3
2
u2. Notice that the assumption

of periodic boundary conditions is for simplicity only and is not essential: the method

can be easily designed for non-periodic boundary conditions.

To define the local discontinuous Galerkin method, we further rewrite the equation

(2.1) as a first order system:

u − rx = q, (2.5)

r − ux = 0.

The LDG method for the equations (2.5), where q is assumed known and we would want

to solve for u, is formulated as follows: find uh, rh ∈ Vh such that, for all test functions

ρ, φ ∈ Vh, ∫
Ij

uhρdx +

∫
Ij

rhρxdx − (r̂hρ
−)j+ 1

2
+ (r̂hρ

+)j− 1
2

=

∫
Ij

qhρdx, (2.6)∫
Ij

rhφdx +

∫
Ij

uhφxdx − (ûhφ
−)j+ 1

2
+ (ûhφ

+)j− 1
2

= 0. (2.7)

The “hat” terms in (2.6)–(2.7) in the cell boundary terms from integration by parts are

the so-called “numerical fluxes”, which are single valued functions defined on the edges

and should be designed based on different guiding principles for different PDEs to ensure

stability. For the standard elliptic equation (2.5), we can take the simple choices such

that

r̂h = r−h , ûh = u+
h , (2.8)

where we have omitted the half-integer indices j+ 1
2

as all quantities in (2.8) are computed

at the same points (i.e. the interfaces between the cells). We remark that the choice for

the fluxes (2.8) is not unique. We can for example also choose the following numerical

flux

r̂h = r+
h , ûh = u−

h . (2.9)
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For the equation (2.2), we can also rewrite it into a first order system:

qt + f(u)x − px + B(r)x = 0,

p − (b(r)u)x = 0, (2.10)

r − ux = 0,

where B(r) = 1
2
r2 and b(r) = B′(r) = r. Now we can define a local discontinuous

Galerkin method to equations (2.10), resulting in the following scheme: find qh, ph,

rh ∈ Vh such that, for all test functions ϕ, ψ, η ∈ Vh,∫
Ij

(qh)tϕdx −
∫

Ij

(f(uh) − ph + B(rh))ϕxdx

+ ((f̂ − p̂h + B̂(rh))ϕ
−)j+ 1

2
− ((f̂ − p̂h + B̂(rh))ϕ

+)j− 1
2

= 0, (2.11)∫
Ij

phψdx +

∫
Ij

b(rh)uhψxdx − (b̂(rh)ũhψ
−)j+ 1

2
+ (b̂(rh)ũhψ

+)j− 1
2

= 0, (2.12)∫
Ij

rhφdx +

∫
Ij

uhηxdx − (ûhη
−)j+ 1

2
+ (ûhη

+)j− 1
2

= 0. (2.13)

The numerical fluxes in equations (2.11)–(2.13) are chosen as

p̂h = p−h , ûh = u+
h , B̂(rh) = B(r−h ), b̂(rh) =

B(r+
h ) − B(r−h )

r+
h − r−h

, ũh = u+
h . (2.14)

Here f̂(u−
h , u+

h ) is a monotone flux for solving conservation laws, i.e. it is Lipschitz

continuous in both arguments, consistent (f̂(uh, uh) = f(uh)), non-decreasing in the

first argument and non-increasing in the second argument. Examples of monotone fluxes

which are suitable for discontinuous Galerkin methods can be found in, e.g., [8]. We could

for example use the simple Lax-Friedrichs flux

f̂(u−
h , u+

h ) =
1

2
(f(u−

h ) + f(u+
h ) − α(u+

h − u−
h )), α = max |f ′(uh)|,

where the maximum is taken over a relevant range of uh. This Lax-Friedrichs flux is

used in the numerical experiments in next section. The definition of the algorithm is

now complete.

We remark that the choice for the fluxes (2.14) is not unique. In fact the crucial part

is taking p̂h and ûh from opposite sides and B̂(rh) and ũh from opposite sides.

2.3 Algorithm flowchart

In this section, we give details related to the implementation of the method.

• First, from the equations (2.6)-(2.8), we obtain qh in the following matrix form

qh = Auh, (2.15)

where qh and uh are the vectors containing the degrees of freedom for qh and uh,

respectively.
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• From (2.11)-(2.14), we obtain the LDG discretization of the residual −f(u)x +
1
2
(u2)xxx − 1

2
((ux)

2)x in the following vector form

(qh)t = res(uh). (2.16)

• We then combine (2.15) and (2.16) to obtain

A(uh)t = res(uh). (2.17)

• We use a time discretization method to solve

(uh)t = A−1res(uh). (2.18)

This step involves a linear solver with the matrix A. We perform a LU decom-

position for A at the beginning and use it for all time steps. Any standard ODE

solvers can be used here, for example the Runge-Kutta methods.

The LDG matrix A is a sparse block matrix, hence its multiplication with vectors and

a linear solver involving it as the coefficient matrix can be implemented efficiently.

3 L2 stability of the LDG method

In this section, we prove the L2 stability of the LDG method for the Camassa-Holm

equation defined in the previous section.

Proposition 3.1. (L2 stability) The solution to the schemes (2.6)-(2.8) and (2.11)-(2.14)

satisfies the L2 stability
d

dt

∫ L

0

(u2
h + r2

h)dx ≤ 0. (3.1)

Proof. For equation (2.6), we first take the time derivative and get∫
Ij

(uh)tρdx +

∫
Ij

(rh)tρxdx − ((̂rh)tρ
−)j+ 1

2
+ ((̂rh)tρ

+)j− 1
2

=

∫
Ij

(qh)tρdx. (3.2)

Since (3.2), (2.7) and (2.11)–(2.13) holds for any test functions in Vh, we can choose

ρ = −uh, φ = (rh)t, ϕ = uh, ψ = −rh, η = ph.

With these choices of test functions and summing up the five equations in (3.2), (2.7)

and (2.11)–(2.13), we obtain∫
Ij

((uh)tuh + (rh)trh)dx −
∫

Ij

f(uh)(uh)xdx + (f̂(uh)u
−
h )j+ 1

2
− (f̂(uh)u

+
h )j− 1

2

+

∫
Ij

(phuh)xdx − (p̂hu
−
h + ûhp

−
h )j+ 1

2
+ (p̂hu

+
h + ûhp

+
h )j− 1

2
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−
∫

Ij

(B(rh)uh)xdx + (B̂(rh)u
−
h + b̂(rh)ũhr

−
h )j+ 1

2
− (B(rh)u

+
h + b̂(rh)ũhr

+
h )j− 1

2

+

∫
Ij

((rh)tuh)xdx − ((̂rh)tu
−
h + ûh(r

−
h )t)j+ 1

2
+ ((̂rh)tu

+
h + ûh(r

+
h )t)j− 1

2
= 0.

Taking F (uh) =
∫ uh f(τ)dτ , we have∫

Ij

((uh)tuh + (rh)trh)dx + Ψj+ 1
2
− Ψj− 1

2
+ Θj− 1

2
= 0, (3.3)

where the numerical entropy fluxes are given by

Ψj+ 1
2

=
(
−F (u−

h ) + f̂u−
h + p−h u−

h − (p̂hu
−
h + ûhp

−
h )

−B(r−h )u−
h + B̂(rh)u

−
h + b̂(rh)r

−
h + (r−h )tu

−
h − ((̂rh)tu

−
h + ûh(r

−
h )t)

)
j+ 1

2

,

and the extra term Θ is given by

Θj− 1
2

=
(
[F (uh)] − f̂ [uh] − [phuh] + p̂h[uh] + ûh[ph]

+ [B(rh)uh] − b̂(rh)ũh[rh] − B̂(rh)[uh] − [(rh)tuh] + (̂rh)t[uh] + ûh[(rh)t]
)

j− 1
2

.

With the definition (2.8) and (2.14) of the numerical fluxes and after some algebraic

manipulation, we easily obtain

−[phuh] + p̂h[uh] + ûh[ph] = 0,

[B(rh)uh] − b̂(rh)ũh[rh] − B̂(rh)[uh] = 0,

−[(rh)tuh] + (̂rh)t[uh] + ûh[(rh)t] = 0

and hence

Θj− 1
2

= ([F (uh)] − f̂ [uh])j− 1
2
≥ 0,

where the last inequality follows from the monotonicity of the flux

[F (uh)] − f̂ [uh] =

∫ u+
h

u−
h

(f(s) − f̂(u−
h , u+

h ))ds ≥ 0.

Summing up the cell entropy inequalities, we obtain the desired L2 stability (3.1).

4 Error estimates of the LDG method

In this section, we present the procedure to obtain a priori error estimates of the LDG

method for the Camassa-Holm equation.
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4.1 Notations, definitions and auxiliary result

In this section we introduce notations and definitions to be used later in the paper and

also present some auxiliary results. We first review an important quantity measuring

the relationship between the numerical flux and physical flux introduced in [34, 31]. We

then define some projections and present certain interpolation and inverse properties for

the finite element spaces that will be used in the error analysis.

4.1.1 Notations for different constants

We will adopt the following convention for different constants. These constants may

have a different value in each occurrence.

We will denote by C a positive constant independent of h, which may depend on the

solution of the problem considered in this paper. Especially, to emphasize the nonlinear-

ity of the flux f(u) (or other nonlinear fluxes), we will denote by C� a positive constant

depending on the maximum of |f ′′| or/and |f ′′′|. we remark that C� = 0 for a linear flux

f = cu with a constant c. For problems considered in this section, the exact solution is

assumed to be smooth with periodic or compactly supported boundary condition. Also,

0 ≤ t ≤ T for a fixed T . Therefore, the exact solution is always bounded. We follow the

convention [34] to redefine the nonlinear functions f(u), B(u), etc. outside their ranges

such that the derivatives of these nonlinear functions f ′(u), f ′′(u), etc. become globally

bounded functions.

4.1.2 A quantity related to the numerical flux

For notational convenience we would like to introduce the following numerical flux related

to the discontinuous Galerkin spatial discretization. f̂(ω−, ω+) is a given monotone

numerical flux that depends on the two values of the function ω at the discontinuity

point xj+ 1
2
, namely ω±

j+ 1
2

= ω(x±
j+ 1

2

). The numerical flux f̂(ω−, ω+) satisfies the following

conditions:

(a) it is locally Lipschitz continuous, so it is bounded when ω± are in a bounded

interval;

(b) it is consistent with the flux f(ω), i.e., f̂(ω, ω) = f(ω);

(c) it is a nondecreasing function of its first argument, and a nonincreasing function

of its second argument.

In [34], Zhang and Shu introduced an important quantity to measure the difference

between the numerical flux and the physical flux. In [31], Xu and Shu introduced the idea

of “uniform dissipative flux”. For completeness, we give their definition in the following

lemma.
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Lemma 4.1. [34] For any piecewise smooth function ω ∈ L2(0, 1), on each cell boundary

point we define

α(f̂ ; ω) ≡ α(f̂ ; ω−, ω+) �
{

[ω]−1(f(ω̄) − f̂(ω)), if[ω] �= 0;
1
2
|f ′(ω̄)|, if[ω] = 0,

(4.1)

where f̂(ω) ≡ f̂(ω−, ω+) is a monotone numerical flux consistent with the given flux f .

Then α(f̂ ; ω) is non-negative and bounded for any (ω−, ω+) ∈ R2. Moreover we have

1

2
|f ′(ω̄)| ≤ α(f̂ ; ω) + C�|[ω]|, (4.2)

−1

8
f ′′(ω̄)[ω] ≤ α(f̂ ; ω) + C�|[ω]|2. (4.3)

Remark 4.1. Examples of monotone fluxes which are suitable for the discontinuous

Galerkin methods can be found in, e.g., [8]. For our error estimates, we rewrite the

numerical flux in a viscosity form

f̂(ω−, ω+) =
1

2
(f(ω−) + f(ω+) − λ(ω−, ω+)(ω+ − ω−)), (4.4)

and assume the viscosity coefficient λ(ω−, ω+) satisfies

λ(ω−, ω+) ≥ λ0 > 0, λ0 is constant. (4.5)

We call such flux as a “uniform dissipative flux” [31]. The well known Lax-Friedrichs

flux is a uniform dissipative flux with a proper choice of λ. This property is necessary

in our proof because of a lack of control for certain jump terms at cell boundaries due

to the nonlinear terms and the high order derivative terms.

We would also like to use the following simplified notation. For any functions ω and

φ, we denote

α(f̂ ; ω)[φ]2 =
∑

1≤j≤N

α(f̂ ; ω)j+ 1
2
[φ]2

j+ 1
2
.

4.1.3 Projection and interpolation properties

In what follows, we will consider the standard L2-projection of a function ω with k + 1

continuous derivatives into space Vh, denoted by P, i.e., for each j,∫
Ij

(Pω(x) − ω(x))v(x)dx = 0 ∀v ∈ P k(Ij), (4.6)

and the special projection P± into Vh, which satisfy, for each j,∫
Ij

(P+ω(x) − ω(x))v(x)dx = 0 ∀v ∈ P k−1(Ij), and P+ω(x+
j− 1

2

) = ω(xj− 1
2
) (4.7)∫

Ij

(P−ω(x) − ω(x))v(x)dx = 0 ∀v ∈ P k−1(Ij), and P−ω(x−
j+ 1

2

) = ω(xj+ 1
2
).
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For the projections mentioned above, it is easy to show (c.f. [6])

‖ωe‖ + h‖ωe‖∞ + h
1
2‖ωe‖Γh

≤ Chk+1, (4.8)

where ωe = Pω − ω or ωe = P±ω − ω. The positive constant C, solely depending on ω,

is independent of h. Γh denotes the set of boundary points of all elements Ij.

4.1.4 Inverse Properties

Finally we list some inverse properties of the finite element space Vh that will be used in

our error analysis. For any ωh ∈ Vh, there exists a positive constant C independent of

ωh and h, such that

(i) ‖∂xωh‖ ≤ Ch−1‖ωh‖, (ii) ‖ωh‖Γh
≤ Ch− 1

2‖ωh‖, (iii) ‖ωh‖∞ ≤ Ch− 1
2‖ωh‖. (4.9)

For more details of these inverse properties, we refer to [6].

4.2 The main error estimate result

We state the main error estimates of the semi-discrete LDG scheme for the Camassa-

Holm equation.

Theorem 4.2. Let u be the exact solution of the problem (2.1)-(2.2), which is suffi-

ciently smooth with bounded derivatives, and assume f ∈ C3. Let uh be the numerical

solution of the semi-discrete LDG scheme (2.6)-(2.8) and (2.11)-(2.14) and denote the

corresponding numerical error by eu = u − uh and er = r − rh where r = ux is defined

by (2.5). For regular triangulations of I = (0, 1), if the finite element space Vh is the

piecewise polynomials of degree k ≥ 2, then for small enough h there holds the following

error estimates

‖u − uh‖2 + ‖r − rh‖2 ≤ Ch2k, (4.10)

where the constant C depends on the final time T , k, ‖u‖k+1, ‖r‖k+1 and the bounds

on the derivatives |f (m)|, m = 1, 2, 3. Here ‖u‖k+1 and ‖r‖k+1 are the maximum over

0 ≤ t ≤ T of the standard Sobolev k + 1 norm in space.

Remark 4.2. Although we could not obtain the optimal error estimates O(hk+1) for

u due to some extra boundary terms arising from high order derivatives, numerical

examples in Section 5 verify the optimal order O(hk+1) for u. For the solution rh, our

numerical results indicate that k-th order accuracy is sharp.

4.2.1 The error equation

In order to obtain the error estimate to smooth solutions for the considered semi-discrete

LDG scheme (2.6)-(2.8) and (2.11)-(2.14), we need to first obtain the error equation.

10



Notice that the scheme (2.6) and (2.11)–(2.13) is also satisfied when the numerical

solutions are replaced by the exact solutions. We then obtain the error equation∫
Ij

(u − uh)tρdx −
∫

Ij

(
(q − qh)t(ρ + ϕ) + (r − rh)φ + (p − ph)ψ + (r − rh)η

)
dx

+

∫
Ij

(r − rh)tρxdx − ((rt − (̂rh)t)ρ
−)j+ 1

2
+ ((rt − (̂rh)t)ρ

+)j− 1
2

+

∫
Ij

(u − uh)φxdx − ((u − ûh)φ
−)j+ 1

2
+ ((u − ûh)φ

+)j− 1
2

+

∫
Ij

(p − ph)ϕxdx − ((p − p̂h)ϕ
−)j+ 1

2
+ ((p − p̂h)ϕ

+)j− 1
2

+

∫
Ij

(u − uh)ηxdx − ((u − ûh)η
−)j+ 1

2
+ ((u − ûh)η

+)j− 1
2

−
∫

Ij

(B(r) − B(rh))ϕxdx + ((B(r) − B̂(rh))ϕ
−)j+ 1

2
− ((B(r) − B̂(rh))ϕ

+)j− 1
2

+

∫
Ij

(b(r)u − b(rh)uh)ψxdx − ((b(r)u − b̂(rh)ũh)ψ
−)j+ 1

2
+ ((b(r)u − b̂(rh)ũh)ψ

+)j− 1
2

−
∫

Ij

(f(u) − f(uh))ϕxdx + ((f(u) − f̂)ϕ−)j+ 1
2
− ((f(u) − f̂)ϕ+)j− 1

2
= 0

for all ρ, φ, ϕ, ψ, η ∈ Vh.

Define

Bj(u − uh, q − qh, p − ph, r − rh; ρ, φ, ϕ, ψ, η)

=

∫
Ij

(u − uh)tρdx −
∫

Ij

(
(q − qh)t(ρ + ϕ) + (r − rh)φ + (p − ph)ψ + (r − rh)η

)
dx

+

∫
Ij

(r − rh)tρxdx − ((rt − (̂rh)t)ρ
−)j+ 1

2
+ ((rt − (̂rh)t)ρ

+)j− 1
2

+

∫
Ij

(u − uh)φxdx − ((u − ûh)φ
−)j+ 1

2
+ ((u − ûh)φ

+)j− 1
2

(4.11)

+

∫
Ij

(p − ph)ϕxdx − ((p − p̂h)ϕ
−)j+ 1

2
+ ((p − p̂h)ϕ

+)j− 1
2

+

∫
Ij

(u − uh)ηxdx − ((u − ûh)η
−)j+ 1

2
+ ((u − ûh)η

+)j− 1
2
,

Hj(f ; u, uh; ϕ) =

∫
Ij

(f(u) − f(uh))ϕxdx − ((f(u) − f̂)ϕ−)j+ 1
2

+ ((f(u) − f̂)ϕ+)j− 1
2
,

(4.12)

and

Rj(b, B; r, u, rh, uh; ϕ, ψ) (4.13)

11



=

∫
Ij

(B(r) − B(rh))ϕxdx − ((B(r) − B̂(rh))ϕ
−)j+ 1

2
+ ((B(r) − B̂(rh))ϕ

+)j− 1
2

−
∫

Ij

(b(r)u − b(rh)uh)ψxdx + ((b(r)u − b̂(rh)ũh)ψ
−)j+ 1

2
− ((b(r)u − b̂(rh)ũh)ψ

+)j− 1
2
.

Summing over j, the error equation becomes

N∑
j=1

Bj(u − uh, q − qh, p − ph, r − rh; ρ, φ, ϕ, ψ, η) (4.14)

=

N∑
j=1

(
Hj(f ; u, uh; ϕ) + Rj(b, B; r, u, rh, uh; ϕ, ψ)

)
for all ρ, φ, ϕ, ψ, η ∈ Vh.

Denoting

s = P+u − uh, se = P+u − u,

ξ = Pq − qh, ξe = Pq − q, (4.15)

v = Pp − ph, ve = Pp − p,

σ = Pr − rh, σe = Pr − r

and taking the test functions

ρ = −s, φ = σt, ϕ = s, ψ = −σ, η = v,

we obtain the important energy equality

N∑
j=1

Bj(s − se, ξ − ξe, v − ve, σ − σe;−s, σt, s,−σ, v) (4.16)

=
N∑

j=1

(
Hj(f ; u, uh; s) + Rj(b, B; r, u, rh, uh; s,−σ)

)
.

4.2.2 Proof of the main result

In this subsection, we will follow the idea of [31] to present the main proof of Theorem

4.2. We shall prove the theorem by analyzing each term of the energy equation (4.16).

First, we consider the left hand side of the energy equation (4.16). The estimates for

the left hand side of the energy equation are given in the lemma below. The proof of

this lemma will be given in the Appendix A.1.

Lemma 4.3. The following equation holds

N∑
j=1

Bj(s − se, ξ − ξe, v − ve, σ − σe;−s, σt, s,−σ, v) (4.17)

=

∫ 1

0

(sst + σtσ)dx −
∫ 1

0

se
tsdx −

N∑
j=1

((v̂e + σ̂e
t )[s])j+ 1

2
.
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To deal with the nonlinearity of the flux f(u) we would like to make an a priori

assumption that, for small enough h, there holds

‖u − uh‖ ≤ h. (4.18)

We will justify the validity of this a priori assumption later. For the linear flux f(u) = cu,

this a priori assumption is unnecessary.

Corollary 4.4. Suppose that the interpolation property (4.8) is satisfied, then the a

priori assumption (4.18) implies that

‖eu‖∞ ≤ Ch
1
2 and ‖Qu − uh‖∞ ≤ Ch

1
2 (4.19)

where Q = P or Q = P± is the projection operator.

Next, we consider the right hand side of the energy equation (4.16). We can rewrite

it into the following form

N∑
j=1

Hj(f ; u, uh; s) =
N∑

j=1

∫
Ij

(f(u) − f(uh))sxdx (4.20)

+
N∑

j=1

((f(u) − f(ūh))[s])j+ 1
2

+
N∑

j=1

((f(ūh) − f̂)[s])j+ 1
2
,

N∑
j=1

Rj(b, B; r, u, rh, uh; s,−σ)

=

N∑
j=1

∫
Ij

(B(r) − B(rh))sxdx +

N∑
j=1

((B(r) − B(r−h ))[s])j+ 1
2

(4.21)

+
N∑

j=1

∫
Ij

(b(r)u − b(rh)uh)σxdx +
N∑

j=1

((b(r)u − b̂(rh)u
+
h )[σ])j+ 1

2
,

where we take into account the periodic boundary condition and recall the average ūh is

defined by ūh = 1
2
(u+

h + u−
h ).

The estimates for the equation (4.20) are given in the lemma below.

Lemma 4.5. Suppose that the interpolation properties (4.8) are satisfied, then we have

the following estimate for (4.20)

N∑
j=1

Hj(f ; u, uh; s) (4.22)

≤− 1

4
α(f̂ ; uh)[s]

2 + (C + C�(‖s‖∞ + h−1‖eu‖2
∞))‖s‖2 + (C + C�h

−1‖eu‖2
∞)h2k+1.

Remark 4.3. For the proof of this lemma, we refer readers to Lemma 3.4 and Lemma

3.5 in [31]. For f(u) = 2κu + 3
2
u2 in the CH equation (1.1), we have f ′′′(u) = 0 and we

do not need the estimate for T6 in [31].
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The estimates for the equation (4.21) are given in the lemma below. The proof of

this lemma will be given in the Appendix A.2.

Lemma 4.6. Suppose that the interpolation properties (4.8) are satisfied, then we have

the following estimate for (4.21)

|
N∑

j=1

Rj(b, B; r, u, rh, uh; s,−σ)| (4.23)

≤
N∑

j=1

(|b′(r)uσ̄e[σ]| + |b(r)(σe)−[s]|)j+ 1
2

+
1

2
‖s‖2 + C‖σ‖2 + Ch2k+2.

Now we are ready to get the final error estimates (4.10). Combining equations (4.16),

(4.17), (4.22) and (4.23), we obtain∫ 1

0

(sts + σtσ)dx +
1

4
α(f̂ ; uh)[s]

2

≤
∫ 1

0

se
tsdx +

N∑
j=1

((v̂e + σ̂e
t )[s])j+ 1

2
+

N∑
j=1

(|b′(r)uσ̄e[σ]| + |b(r)(σe)−[s]|)j+ 1
2

+ (C + C�(‖s‖∞ + h−1‖eu‖2
∞))‖s‖2 + (C + C�h

−1‖eu‖2
∞)h2k+1 + C‖σ‖2.

Again by Young’s inequality and the interpolation property (4.8), the equation becomes∫ 1

0

(sts + σtσ)dx +
1

8
α(f̂ ; uh)[s]

2

≤(C + C�(‖s‖∞ + h−1‖eu‖2
∞))‖s‖2 + (C + C�h

−1‖eu‖2
∞)h2k+1 + Ch2k + C‖σ‖2.

where we use the uniform dissipation property of the numerical flux f̂ . Using the results

(4.19) implied by the a priori assumption (4.18) and the positive property of α(f̂ ; uh),

we can get the following error estimate

1

2

d

dt

∫ 1

0

(s2 + σ2)dx ≤ C(‖s‖2 + ‖σ‖2) + Ch2k.

Thus Theorem 4.2 follows by the triangle inequality and the interpolating property (4.8).

To complete the proof, let us verify the a priori assumption (4.18). For k ≥ 2,

we can consider h small enough so that Chk < 1
2
h, where C is the constant in (4.10)

determined by the final time T . Then, if t∗ = sup{t : ‖u(t) − uh(t)‖ ≤ h}, we would

have ‖u(t∗) − uh(t
∗)‖ = h by continuity if t∗ is finite. On the other hand, our proof

implies that (4.10) holds for t ≤ t∗, in particular ‖u(t∗) − uh(t
∗)‖ ≤ Chk < 1

2
h. This is

a contradiction if t∗ < T . Hence t∗ ≥ T and our a priori assumption (4.18) is justified.

5 Numerical results

In this section we provide numerical examples to illustrate the accuracy and capability

of the method. Time discretization is by the third order explicit TVD Runge-Kutta
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method in [26]. This is not the most efficient method for the time discretization to our

LDG scheme. However, we will not address the issue of time discretization efficiency

in this paper. We have verified with the aid of successive mesh refinements, that in all

cases, the results shown are numerically convergent. We will give the numerical test

results for the CH equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (5.1)

with different initial conditions.

Example 5.1. Smooth solution

In this example, we test the scheme with smooth traveling waves. Smooth traveling

waves are solution of the form

u(x, t) = φ(x − ct) (5.2)

where φ is solution of second-order ordinary differential equation

φxx = φ − α

(φ − c)2
. (5.3)

In order to get a smooth traveling wave, we choose the constants c and α as in [16], i.e.

α = c = 3. The initial conditions for φ is

φ(0) = 1,
dφ

dx
(0) = 0. (5.4)

It gives rise to a smooth traveling wave with period a 
 6.46954603635. We use fourth-

order explicit Runge-Kutta method with 100000 points to approximate the solution of

the equation (5.3). This high precision solution is used as a reference solution for the

smooth traveling wave. The L2 and L∞ errors and the numerical orders of accuracy for

u at time t = 0.5 with uniform meshes are contained in Table 5.1. Periodic boundary

conditions are used. We can see that the method with P k elements gives a uniform

(k+1)-th order of accuracy for u in both norms. For the solution rh, the accuracy is k-th

order in both norms for k ≥ 1 and this indicates that our error estimates result for r is

sharp.

Example 5.2. Accuracy test

The peakon solutions of the CH equation (5.1) are well known and are the only

traveling waves for which there is a simple explicit formula. The peaked traveling wave

solution is

u(x, t) = ce−|x−ct|, (5.5)

where c is the wave speed. We give the accuracy test with c = 0.25. The accuracy is

measured in smooth parts of the solution, 1/5 of the computational domain away from

the peak. The L2 and L∞ errors and the numerical orders of accuracy for u at time t = 1

with uniform meshes in [−25, 25] are contained in Table 5.2. We can see that the method

with P k elements gives a uniform (k+1)-th order of accuracy for u in both norms.
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Table 5.1: Accuracy test for the CH equation (5.1) with the exact solution (5.2). Periodic

boundary condition. Uniform meshes with N cells at time t = 0.5.

u − uh r − rh

N L2 error order L∞ error order L2 error order L∞ error order
10 1.42E-01 – 3.08E-01 – 1.42E-01 – 3.08E-01 –

P 0 20 7.95E-02 0.84 1.77E-01 0.80 7.95E-02 0.83 1.77E-01 0.57
40 4.23E-02 0.91 9.41E-01 0.91 4.23E-02 0.94 9.41E-02 0.87
80 2.18E-02 0.95 4.83E-02 0.96 2.18E-02 0.98 4.83E-02 0.97
10 1.16E-02 – 6.63E-02 – 1.16E-02 – 6.63E-02 –

P 1 20 3.12E-03 1.90 1.86E-02 1.84 3.12E-03 0.68 1.86E-02 0.24
40 8.05E-04 1.95 4.76E-03 1.96 8.05E-04 0.85 4.76E-03 0.63
80 2.04E-04 1.98 1.19E-02 2.00 2.04E-04 0.93 1.19E-03 0.87
10 1.41E-03 – 6.75E-03 – 1.41E-03 – 6.75E-03 –

P 2 20 1.49E-04 3.24 9.06E-04 2.90 1.49E-04 2.64 9.06E-04 2.64
40 1.70E-05 3.13 9.85E-05 3.20 1.70E-05 2.06 9.85E-05 1.45
50 8.95E-06 2.88 4.96E-05 3.07 8.95E-06 1.95 4.96E-05 1.77

Table 5.2: Accuracy test for the CH equation (5.1) with the exact solution (5.5). Periodic

boundary condition. c = 0.25. Uniform meshes with N cells at time t = 1.

N L2 error order L∞ error order
10 8.71E-03 – 1.90E-02 –

P 0 20 2.18E-03 2.00 4.95E-03 1.94
40 9.58E-04 1.18 2.36E-03 1.07
80 4.08E-04 1.23 1.19E-03 0.98
10 1.45E-02 – 3.17E-02 –

P 1 20 8.33E-04 4.12 2.06E-03 3.94
40 1.14E-04 2.87 3.74E-04 2.46
80 1.80E-05 2.67 8.82E-05 2.08
10 1.60E-02 – 3.50E-02 –

P 2 20 4.05E-04 5.31 1.23E-03 4.83
40 2.81E-05 3.85 9.65E-05 3.68
80 3.54E-06 2.99 1.29E-05 2.90

Example 5.3. Peakon solution

In this example, we present the wave propagation of the periodized version of the

16



solution (5.5). In the single peak case, the initial condition is

u0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c

cosh(a/2)
cosh(x − x0), |x − x0| ≤ a/2,

c

cosh(a/2)
cosh(a − (x − x0)), |x − x0| > a/2,

(5.6)

where x0 is the position of the trough and a is the period. We present the wave propaga-

tion for the CH equation with parameters c = 1, a = 30 and x0 = −5. The computational

domain is [0, a]. In Figure 5.1, the peak profile at t = 0, 5, 10 and the space time graph

of the solutions up to t = 10 are shown. The lack of smoothness at the peak of peakon

introduces high-frequency dispersive errors into the calculation and will cause the nu-

merical oscillation near the peak. In our computation of the LDG method, we use the

P 5 element with N = 320 cells to resolve the peak. We can see clearly that the moving

peak profile is resolved very well.

Example 5.4. Two-peakon interaction

In this example we consider the two-Peakon interaction of the CH equation with the

initial condition

u0(x) = φ1(x) + φ2(x), (5.7)

where

φi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ci

cosh(a/2)
cosh(x − xi), |x − xi| ≤ a/2,

ci

cosh(a/2)
cosh(a − (x − xi)), |x − xi| > a/2,

i = 1, 2. (5.8)

The parameters are c1 = 2, c2 = 1, x1 = −5, x2 = 5, a = 30. The computational domain

is [0, a]. We use the P 5 element with N = 320 cells in our computation of the LDG

method. In Figure 5.2, the two-peakon interaction at t = 0, 5, 12 and 18 are shown. We

can see clearly that the moving peak interaction is resolved very well.

Example 5.5. Three-peakon interaction

In this example we consider the three-Peakon interaction of the CH equation with

the initial condition

u0(x) = φ1(x) + φ2(x) + φ3(x), (5.9)

where φi, i = 1, 2, 3 are defined as in (5.8). The parameters are c1 = 2, c2 = 1, c3 = 0.8,

x1 = −5, x2 = −3, x3 = −1, a = 30. The computational domain is [0, a]. We use the P 5

element with N = 320 cells in our computation of the LDG method. In Figure 5.3, the

three-peakon interaction at t = 0, 1, 2, 3, 4 and 6 are shown. We can see clearly that

the moving peak interaction is resolved very well.
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Figure 5.1: The peak profile of the CH equation (5.1) with the initial condition (5.6).

Periodic boundary condition in [0, 30]. P 5 elements and a uniform mesh with N = 320

cells.

Example 5.6. Solution with a discontinuous derivative

In this example we consider a initial data function u0 which has a discontinuous

derivative as in [16]. The initial condition is

u0(x) =
10

(3 + |x|)2
. (5.10)

The computational domain is [−30, 30]. We use the P 2 element with N = 640 cells in

our computation of the LDG method. The solutions at time t = 5, 10, 15 and 20 are

shown in Figure 5.4. Even if we do not use higher order polynomials and more cells, we

still obtain a good resolution of the solution comparable with that in [16].

Example 5.7. Break up of the plateau traveling wave

In this example we consider a cut-off peakon in [1], i.e. a plateau function u(x, t) =
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Figure 5.2: The two-peakon interaction of the CH equation (5.1) with the initial condition

(5.7). Periodic boundary condition in [0, 30]. P 5 elements and a uniform mesh with

N = 320 cells.

φ(x − ct) with

φ(x) =

⎧⎨⎩
cex+k, x ≤ −k,

c, |x| ≤ k,

ce−x+k, x ≥ k.

(5.11)

We put c = 0.6 and k = 5. The computational domain is [−40, 40]. We use the P 2

element with N = 800 cells in our computation of the LDG method. The break up

of the plateau traveling wave is shown in Figure 5.5 at different time. The solution is

resolved very well comparing with the result in [1].

6 Conclusion

We have developed a local discontinuous Galerkin method to solve the Camassa-Holm

equation. L2 stability is proven for general solutions, and an a priori error estimate
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Figure 5.3: The three-peakon interaction of the CH equation (5.1) with the initial con-

dition (5.9). Periodic boundary condition in [0, 30]. P 5 elements and a uniform mesh

with N = 320 cells.
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Figure 5.4: The solution with discontinuous derivative of the CH equation (5.1) with

the initial condition (5.10). Periodic boundary condition in [−30, 30]. P 2 elements and

a uniform mesh with N = 640 cells.

is obtained for smooth solutions. Numerical examples are given to illustrate the accu-

racy and capability of the methods. Although not addressed in this paper, the LDG

methods are flexible for general geometry, unstructured meshes and h-p adaptivity, and

have excellent parallel efficiency. The LDG method has a good potential in solving the

Camassa-Holm equation and similar nonlinear equations in mathematical physics.

A Appendix: Proof of several Lemmas

A.1 Proof of Lemma 4.3

Bj(s − se, ξ − ξe, v − ve, σ − σe;−s, σt, s,−σ, v) (A.1)

=Bj(s, ξ, v, σ;−s, σt, s,−σ, v) − Bj(s
e, ξe, ve, σe;−s, σt, s,−σ, v),
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Figure 5.5: The break up of plateau traveling wave of the CH equation (5.1) with the

initial condition (5.11). Periodic boundary condition in [−40, 40]. P 2 elements and a

uniform mesh with N = 800 cells.
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By the same argument as that used for the L2 stability in Proposition 3.1, the first term

of the right hand side in (A.1) becomes

Bj(s, ξ, v, σ;−s, σt, s,−σ, v) =

∫
Ij

(sts + σtσ)dx + Ψj+ 1
2
− Ψj− 1

2
, (A.2)

where Ψ = v−s− − v̂s− − s̃v− + σ−
t s− − σ̂ts

− − ŝσ−
t .

As to the second term of the right hand side in (A.1), we have

Bj(s
e, ξe, ve, σe;−s, σt, s,−σ, v)

=

∫
Ij

(se
ts + σeσt)dx +

∫
Ij

(σev − veσ)dx +

∫
Ij

(σe
t sx + se(σt)x + vesx + sevx)dx (A.3)

+ ((v̂e + σ̂e
t )[s])j− 1

2
+ (ŝe[σt])j− 1

2
+ (s̃e[v])j− 1

2
+ Φj+ 1

2
− Φj− 1

2
,

where Φ = −v̂es− − s̃ev− − σ̂e
t s

− − ŝeσ−
t . Because P is a local L2 projection, and P+,

even though not a local L2 projection, does have the property that s − P+s is locally

orthogonal to all polynomials of degree up to k − 1, we have∫
Ij

σeσtdx +

∫
Ij

(σev − veσ)dx +

∫
Ij

(σe
t sx + se(σt)x + vesx + sevx)dx = 0.

Noticing the special interpolating property of the projection P−, we also have

(ŝe[σt])j− 1
2

+ (s̃e[v])j− 1
2

= 0.

The equation (A.3) then becomes

Bj(s
e, ξe, ve, σe;−s, σt, s,−σ, v) =

∫
Ij

se
tsdx + ((v̂e + σ̂e

t )[s])j− 1
2

+ Φj+ 1
2
− Φj− 1

2
,

Combining the above equation with (A.2), summing over j and taking into account the

periodic boundary condition, we obtain the desired equality (4.17).

A.2 Proof of Lemma 4.6

The proof of Lemma 4.6 is similar to that of Lemma 3.5 in [31]. The main difference is

that we take r̄h = 1
2
(r+

h + r−h ), u+
h and r−h as the reference values of the functions rh and

uh at each boundary point. For the nonlinear terms b(r)u and B(r), we use the following

Taylor expansions

B(r) − B(rh) =b(r)σ − 1

2
b′(r)σ2 − b(r)σe + b′(r)σσe − 1

2
b′(r)(σe)2,

B(r) − B(r−h ) =b(r)σ− − 1

2
b′(r)(σ−)2 − b(r)(σe)− + b′(r)σ−(σe)− − 1

2
b′(r)((σe)−)2,

where we use the property B′(r) = b(r) and b(m)(r) = 0, m ≥ 2.

b(r)u − b(rh)uh
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=b′(r)uσ + b(r)s − b′(r)sσ − b′(r)uσe − b(r)se + b′(r)sσe + b′(r)σse − b′(r)σese,

b(r)u − b̂(rh)u
+
h

=b′(r)uσ̄ + b(r)s+ − b′(r)σ̄s+ − b′(r)uσ̄e − b(r)(se)+

+ b′(r)s+σ̄e + b′(r)σ̄(se)+ − b′(r)σ̄e(se)+.

These imply the following representation

N∑
j=1

Rj(b, B; r, u, rh, uh; s,−σ) = S1 + S2 + S3 + S4 + S5, (A.4)

where

S1 =

N∑
j=1

∫
Ij

b′(r)uσσxdx +

N∑
j=1

(b′(r)uσ̄[σ])j+ 1
2

+
N∑

j=1

∫
Ij

b(r)(sσ)xdx +
N∑

j=1

(b(r)(s+[σ] + σ−[s]))j+ 1
2
,

S2 = − 1

2

(
N∑

j=1

∫
Ij

b′(r)(sσ2)xdx +
N∑

j=1

(b′(r)(2s+σ̄[σ] + (σ−)2[s]))j+ 1
2

)
,

S3 = −
N∑

j=1

∫
Ij

b′(r)uσeσxdx −
N∑

j=1

(b′(r)uσ̄e[σ])j+ 1
2

−
N∑

j=1

∫
Ij

b(r)(σesx + seσx)dx −
N∑

j=1

(b(r)((se)+[σ] + (σe)−[s]))j+ 1
2
,

S4 =
N∑

j=1

∫
Ij

b′(r)σe(sσ)xdx +
N∑

j=1

(b′(r)(s+σ̄e[σ] + (σe)−σ−[s]))j+ 1
2

+
N∑

j=1

∫
Ij

b′(r)seσσxdx +
N∑

j=1

(b′(r)σ̄(se)+[σ])j+ 1
2
,

S5 = − 1

2

(
N∑

j=1

∫
Ij

b′(r)((σe)2sx + 2σeseσx)dx

+
N∑

j=1

(b′(r)(2(se)+σ̄e[σ] + ((σe)−)2[s]))j+ 1
2

)
will be estimated separately later.

• The S1 term.

After a simple integration by parts, it is easy to obtain

S1 = −1

2

N∑
j=1

∫
Ij

(b′(r)u)xσ
2dx −

N∑
j=1

∫
Ij

(b(r))xsσdx ≤ C‖σ‖2 +
1

8
‖s‖2. (A.5)
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• The S2 term.

After a simple integration by parts, it is easy to obtain

S2 =
1

2

N∑
j=1

∫
Ij

(b′(r))xsσ
2dx = 0. (A.6)

• The S3 term.

We can rewrite S3 into the following form

S3 = −
N∑

j=1

∫
Ij

(b′(r)u − b′(rj)uj)σ
eσxdx −

N∑
j=1

∫
Ij

b′(rj)ujσ
eσxdx

−
N∑

j=1

∫
Ij

(b(r) − b(rj))(σ
esx + seσx)dx −

N∑
j=1

∫
Ij

b(rj)(σ
esx + seσx)dx

−
N∑

j=1

(b′(r)uσ̄e[σ])j+ 1
2
−

N∑
j=1

(b(r)(σe)−[s])j+ 1
2
−

N∑
j=1

(b(r)(se)+[σ])j+ 1
2
.

The second term, the fourth term and the last term in the above equation are zero

by the definition of the special projection. Because of |b′(r)u − b′(rj)uj| = O(h)

on each element Ij , then by the inverse property (i) in (4.9), together with the

interpolation property (4.8), the first term in the above equation is estimated by

|
N∑

j=1

∫
Ij

(b′(r)u − b′(rj)uj)σ
eσxdx| ≤ C‖σe‖‖σ‖ ≤ C‖σ‖2 + Ch2k+2.

By the same argument we can also get the estimate for the third term

|
N∑

j=1

∫
Ij

(b(r) − b(rj))(σ
esx + seσx)dx| ≤ C‖σ‖2 +

1

8
‖s‖2 + Ch2k+2.

Now we can get the estimate of S3

S3 ≤
N∑

j=1

(|b′(r)uσ̄e[σ]| + |b(r)(σe)−[s]|)j+ 1
2

+ C‖σ‖2 +
1

8
‖s‖2 + Ch2k+2. (A.7)

• S4 and S5 terms.

Because S4 and S5 are high order terms in the Taylor expansion, it is easy to show

by Young’s inequality and the inverse properties (i) and (ii) in (4.9) that

S4 ≤ Ch−1(‖σe‖∞ + ‖se‖∞)‖σ‖‖s‖ ≤ C‖σ‖2 +
1

8
‖s‖2, (A.8)

S5 ≤ Ch−1‖σe‖∞(‖σe‖‖s‖ + ‖se‖‖σ‖) ≤ C‖σ‖2 +
1

8
‖s‖2 + Ch2k+2. (A.9)

Therefore, summing up the above estimates from equations (A.5) to (A.9), we complete

the proof of Lemma 4.6.
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